221^2=(x+4)x

Simple and best practice solution for 221^2=(x+4)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 221^2=(x+4)x equation:



221^2=(x+4)x
We move all terms to the left:
221^2-((x+4)x)=0
We add all the numbers together, and all the variables
-((x+4)x)+48841=0
We calculate terms in parentheses: -((x+4)x), so:
(x+4)x
We multiply parentheses
x^2+4x
Back to the equation:
-(x^2+4x)
We get rid of parentheses
-x^2-4x+48841=0
We add all the numbers together, and all the variables
-1x^2-4x+48841=0
a = -1; b = -4; c = +48841;
Δ = b2-4ac
Δ = -42-4·(-1)·48841
Δ = 195380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{195380}=\sqrt{4*48845}=\sqrt{4}*\sqrt{48845}=2\sqrt{48845}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{48845}}{2*-1}=\frac{4-2\sqrt{48845}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{48845}}{2*-1}=\frac{4+2\sqrt{48845}}{-2} $

See similar equations:

| 18/u+8=14 | | v+58/10=9 | | 2x+9+8x-16=3x+8 | | 15.56+0.08(x+3)=16.06+0.07 | | 2x-47=19 | | 14+w/7=2 | | 7(b-2=-7 | | -7.9u-2+3.2u-10=2.8-u | | 7-6(r-1)+3(3-4r)=7+(7r-4) | | –2p−2=–2p−4 | | 6x-18=6(x-8)+6 | | 6i-2(i-5)=46 | | 3x+17+2x+12=10x-1 | | 3(x-2)=-6+x+2x | | 10x-41+5x-7+2x+2=180 | | -8x+5x-7=4x+5x+3 | | 2(x-3=10x-6-8x | | 4x^2-2x-56=0 | | 70+3x-8=180 | | 125​ +p=127​ | | 20x-6(2x-5)=46 | | 14=7x+32-3x | | 70+3x-8=90 | | 336=x+5x | | x/10=30/100 | | 4-h/9=7 | | 12.15+0.12(x+3)=12.69+0.11 | | -21=-3/4y | | –6f+5=–7f | | 45/x²-4/x-1=0 | | 3x^2+11x+7=x | | 12.15+0.12(x+3)=12.69-0.11 |

Equations solver categories